Nuclear Reaction Model Code EMPIRE-II

(version: 2.19beta10 Lodi)

M.Herman

Brookhaven National Laboratory e-mail: mwherman@bnl.gov

EMPIRE developers

- R. Capote (Seville, Spain)
- M. Herman (BNL, US)
- P. Oblozinsky (BNL, US)
- M. Sin (Bucharest, Romania)
- A. Trkov (IAEA, Vienna)
- A. Ventura (ENEA, Bologna)
- V. Zerkin (IAEA, Vienna)

EMPIRE highlights

System of codes for modeling nuclear reactions:

- broad range of energies (up to ~200 MeV)
 and projectiles (any nucleon or HI)
- most important nuclear reaction models
- extensive input parameter library (RIPL-2)
- ENDF-6 formatting
- utility codes (ENDF-6 verification)

EMPIRE highlights (cont.)

- automatic retrieval of experimental data from EXFOR
- interactive plots of experimental and calculated results
 - excitation functions
 - angular distributions
 - inclusive emission spectra for n, p, α , and γ)
 - double differential spectra

EMPIRE layout

recoils spectra.

Reaction mechanisms

- optical model (SCAT2),
- coupled channels (ECIS),
- TUL Multistep Direct (ORION + TRISTAN),
- NVWY Multistep Compound with γ -emission,
- second-chance preeq. emission,
- exciton model (DEGAS),

Reaction mechanisms (cont.)

- Monte Carlo preequilibrium (DDHMS),
- HRTW for widths' fluctuations,
- Hauser-Feshbach model with full γ -cascade and dynamical deformation effects ,
- State of the art fission (three-hump barrier)

EMPIRE core

EMPIRE statistics

- EMPIRE core: >60 000 lines
- utility codes: >61 000 lines
- # of bash and Tcl/Tk scripts: 25
- size of the internal parameter library: 2 Mb
- size of the RIPL-2 library: 224 Mb
- size of the EXFOR library: 567 Mb

EMPIRE GUI (Main)

EMPIRE GUI (ZVV plots)

CC MSD MSC DEGAS HMS Lev.Den. Results

Operating systems

- languages: FORTRAN 77 (99%), C (mostly ZVView), bash, Tcl/Tk, awk
- operating systems:
 - Linux (developed on Red Hats up to version 9),
 - UNIX (any one should work but TLC might be needed)
 - Mac (reported to work)
 - MS Windows (EMPIRE core runs)
 - VMS (EMPIRE core used to run)

Coupled-Channels and DWBA

ECIS code by J. Raynal

- Important for deformed nuclei
- Provides:
 - total cross section
 - elastic cross section
 - absorption cross section
 - inelastic cross sections to collective levels
 - transmission coefficients

CC and DWBA (cont.)

- EMPIRE calls ECIS in a transparent way
- RIPL or internal omp are used
- Collective levels taken from RIPL or set up automatically
- Deformed nuclei treated as rotational, spherical as vibrational
- Results are transferred to EMPIRE and used in subsequent calculations

CC and DWBA (cont.)

ECIS can be invoked by EMPIRE in 3 ways:

DIRECT=1 CC for collective levels, total, elastic and absorption, SCAT2 T_l 's used for PE and HF calculations

DIRECT=2 as above but CC is used for all T_l 's

DIRECT=3 DWBA for collective levels, total, elastic and absorption, SCAT2 T_l 's used for PE and HF calculations.

CC MSD MSC DEGAS HMS Lev.Den. Results

Multistep Direct

ORION & TRISTAN by Tamura, Udagawa and Lenske (TUL)

Combination of:

- direct reaction (DR),
- microscopic nuclear structure
- statistical methods.

MSD Highlights

$$H = H^{opt} + H^{intr} + V^{res}$$

- Hopt optical model part
- H^{intr} intrinsic Hamiltonian
- ullet V^{res} residual effective projectile-target interaction

Lippmann-Schwinger equation for the T-matrix

$$T_{\gamma 0}^{(n)} = <\chi_E^{(-)}|(\gamma|V^{res}(G^{chan}(E)V^{res})^{n-1}|0)|\chi_0^{(+)}>$$

the n-step transition from the entrance channel with incoming wave $\chi_0^{(+)}$ and the ground state configuration $|0\rangle=|aA\rangle$ to an exit channel γ with outgoing wave $\chi_E^{(-)}$ at the energy E

- $G^{chan}(E)$ Green's function for the channel.
- Scattering waves are optical model wave functions.

• Real states γ are expanded into n-particle n-hole model states c. With

$$H^{intr} = H_0^{intr} + V^{intr}$$

model states c are eigenstates of H_0^{intr}

- ullet Residual interaction V^{intr} couples states from different particle-hole classes only.
- Configuration mixing between np nh classes is of stochastic nature
- Never-come-back hypotheses

The one-step cross section is expressed as

$$\frac{d^2\sigma^{(1)}}{dEd\Omega} = \sum_{\lambda} S_{\lambda}(E) \frac{\overline{d\sigma^{(1)}}}{d\Omega} \mid_{\lambda},$$

where $\overline{\sigma^{(1)}}$ is a reduced DWBA cross section calculated with the average form factors.

The final result for the two-step MSD cross section is of very intuitive structure

$$\frac{d^2\sigma^{(2)}}{dEd\Omega} = \sum_{\lambda_1\lambda_2} \int dE_1 S_{\lambda_2}(E, E_1) S_{\lambda_1}(E_1, 0) \frac{\overline{d\sigma^{(2)}}}{d\Omega}(E, E_1) \mid_{\lambda_1\lambda_2}.$$

 $\sigma^{(2)}$ is an averaged cross section defined in terms of the $T^{(2)}-$ matrix elements

Response Functions

- A reliable description of response functions is provided by the Random Phase Approximation theory (RPA).
- RPA accounts for collective and non-collective features on the same theoretical footing (weakly excited background states and the strongly excited giant resonances (GR), low-lying surface vibrations).
- Energy weighted sum rules are conserved
- The enhancement of the response due to ground state correlations is included.

Response Functions (cont.)

- The quasi-particle RPA (QRPA) \Rightarrow canonical transformation to two quasi-particle (2qp) rather than 1p-1h states.
- 2qp energies are taken to be complex by adding a state dependent damping width $\Gamma_{\alpha}^{\downarrow}$.
- The MSD response functions are calculated with single particle levels from a spherical Nilsson Hamiltonian with standard parameters.
- Only inelastic events are considered.

MSD Implementation

- Input parameters are passed to ORION and TRISTAN directly from the EMPIRE.
- Default MSD calculation can be performed without any additional input.
- κ_0 self-consistent coupling
- κ_1 from GDR energy
- κ_2 , κ_3 , κ_4 from excitation energies of low-lying 2^+ , 3^- , and 4^+ collective levels.
- Charge exchange channels not allowed.

Multistep Compound

Nishioka, Verbaarschot, Weidenmueller, Yoshida (NVWY)

- series of transitions along the chain of classes of closed channels of increasing complexity.
- classes defined in terms of the number of excited particle-hole pairs (n) plus the incoming nucleon.

$$N = 2n + 1$$

• two-body force \Rightarrow only neighboring classes are coupled $(\Delta n = \pm 1)$.

Average MSC cross-section

$$\frac{d\sigma_{ab}}{dE} = (1 + \delta_{ab}) \sum_{n,m} T_n^a \Pi_{n,m} T_m^b,$$

(kinematical and angular-momentum dependent factors omitted).

• The transmission coefficients T_n^a coupling channel a and class n are given as

$$T_n^a = \frac{4\pi^2 U_n^a}{(1 + \pi^2 \sum_m U_m^a)^2},$$

where

$$U_n^a = \rho_n^b < W_{n,a} >$$

 ρ_n^b bound level density of class n, $W_{n,a}$ the average matrix elements connecting channel a with the states in class n.

• The probability transport matrix Π_{mn} is defined via its inverse,

$$(\Pi^{-1})_{nm} = \delta_{nm}(2\pi\rho_n^b)(\Gamma_n^{\downarrow} + \Gamma_n^{ext}) -(1 - \delta_{nm})2\pi\rho_n^b \overline{V_{n,m}^2} 2\pi\rho_m^b.$$

 $V_{n,m}^2$ matrix element coupling states in classes n and m,

 Γ_n^{\downarrow} average spreading width of states in n, Γ_n^{ext} average total decay width in class n.

• The spreading width Γ_n^\downarrow is again related to the mean squared matrix element $\overline{V_{n,m}^2}$

$$\Gamma_n^{\downarrow} = 2\pi \sum_m \overline{V_{n,m}^2} \rho_m^b$$
.

 ${\color{red} \bullet}$ Chaining hypothesis $\Rightarrow \overline{V_{n,m}^2}$ couples only neighboring classes

$$(\overline{V_{n,m}^2}=0 \text{unless} \mid n-m\mid=1).$$

• The decay width Γ_n^{ext} is determined by the sum of the transmission coefficients T_n^a over all open channels

$$\Gamma_n^{ext} = (2\pi\rho_n^b)^{-1} \sum_a T_n^a.$$

- Chaining hypothesis \Rightarrow only $|n-m| \le 1$ emissions are allowed.
- Note that, differently from the FKK formulation, in the NVWY theory transmission coefficients $T_{n\to m}$ carry two class indexes.

- All microscopic quantities $< W_{n,a} >$ and $V_{n,m}^2$ are expressed in terms of the macroscopic ones.
 - $< W_{n,a} >$ is equated to optical model transmission coefficient
 - $\overline{V_{n,m}^2}$ is related to the imaginary part of the optical model potential $W(\epsilon)$ with $\Gamma_n^{\downarrow} = 2W(\epsilon)$.

- Matrix Π^{-1} is inverted numerically and used to calculate MSC emission spectra.
- EMPIRE decides whether the MSC should be followed by the Hauser-Feshbach or not.

CC MSD MSC DEGAS HMS Lev.Den. Results

Exciton Model

- DEGAS code by E.Betak and P. Oblozinsky
- Semi-classical PE model for nucleon induced reactions
- Strict angular momentum coupling (FKK-like)
- EMPIRE version limited to:
 - single PE emission
 - ullet primary γ -cascade
 - 4 exciton stages

Exciton Model (cont.)

- Absorption cross section renormalized to the EMPIRE one
- Results:
 - neutron, proton and γ spectra
 - spin dependent population of residuals
- ullet Proved to give γ -spectra similar to more microscopic Direct-Semidirect model
- Applicable up to about 30 MeV

CC MSD MSC DEGAS HMS Lev.Den.

Monte Carlo Preequilibrium

- Formulated by M. Blann and coded by M. Chadwick
- Unlimited multiple precompound emissions
- Residuals' production for nucleon induced reactions
- Double-differential spectra
- Recoil spectra
- Thermodynamically correct binding energies
- Applicable up to about 250 MeV

Dynamical approach to lev. dens.

(specific to EMPIRE)

Features:

- Collective enhancements due to nuclear vibration and rotation.
- Super-fluid model below critical excitation energy
- Fermi gas model above critical excitation energy
- Rotation induced deformation (spin dependent)

Dynamical lev. dens. (cont.)

Prolate nuclei

$$\rho(E, J, \pi) = \frac{1}{16\sqrt{6\pi}} \left(\frac{\hbar^2}{\Im_{\parallel}}\right)^{\frac{1}{2}} a^{1/4} \sum_{K=-J}^{J} \left(U - \frac{\hbar^2 K^2}{2\Im_{eff}}\right)^{-\frac{5}{4}}$$

$$\exp\left\{2\left[a\left(U - \frac{\hbar^2 K^2}{2\Im_{eff}}\right)\right]^{\frac{1}{2}}\right\}.$$

Dynamical lev. dens. (cont.)

Oblate nuclei

$$\rho(E, J, \pi) = \frac{1}{16\sqrt{6\pi}} \left(\frac{\hbar^2}{\Im_{\parallel}}\right)^{\frac{1}{2}} a^{1/4}
\sum_{K=-J}^{J} \left(U - \frac{\hbar^2 \left[J(J+1) - K^2\right]}{2|\Im_{eff}|}\right)^{-\frac{5}{4}}
\exp\left\{2\left[a\left(U - \frac{\hbar^2 \left[J(J+1) - K^2\right]}{2|\Im_{eff}|}\right)\right]^{\frac{1}{2}}\right\}.$$

Dynamical lev. dens. (cont.)

K - spin projection, \Im_{eff} - effective moment of inertia defined in terms of perpendicular \Im_{\parallel} and parallel \Im_{\perp} moments

$$\frac{1}{\Im_{eff}} = \frac{1}{\Im_{\parallel}} - \frac{1}{\Im_{\perp}}.$$

Dynamical lev. dens.(cont.)

- Rotational enhancement automatically taken into account.
- Vibrational enhancement

$$K_{vib} = exp \left\{ 1.7 \left(\frac{3m_0 A}{4\pi h^2 S_{drop}} \right)^{2/3} T^{4/3} \right\}$$

with $S_{drop} = 17/4\pi r_{20}$ and $r_0 = 1.26$.

 Rotational and vibrational enhancements are damped with increasing energy

Super-fluid (BCS) lev. dens.

- Used below critical energy
- Level densities are expressed through the determinant Det calculated within the BCS theory

$$\rho_{BCS}(U,J) = \frac{2J+1}{2\sqrt{2\pi}\sigma_{eff}^3\sqrt{Det}} \exp\left(\frac{S-J(J+1)}{2\sigma_{eff}^2}\right)$$

 Corrected for rotational and vibrational collective effects in the non-adiabatic mode

$$\rho(U,J) = \rho_{BCS}(U,J)Q_{rot}^{BCS}K_{rot}Q_{\text{NULL Preaction in the Code EMPIRE-II-p.41/2}}K_{rot}Q_{\text{NULL Preaction in the Code EMPIRE-II-p.41/2}}K_{rot}Q_{\text{NUL$$

Level densities in EMPIRE

EMPIRE-specific:

- a energy dependent following Ignatyuk et al.
- a deformation dependent (surface term)
- ullet experimental values extracted fitting D_{obs}
- EMPIRE-specific systematics built in
- 'local systematics' created during calculations
- ullet BCS below U_{crt}
- adjustment to discrete levels

Gamma-ray emission

E1, E2, and M1 transitions

E1 transmission coefficient

$$T_{Xl}^{GMR} = 2\pi f_{Xl}(E_{\gamma}) E_{\gamma}^{2l+1}.$$

- Brink-Axel hypothesis with
- The E1 γ -ray strength function (Uhl-Kopecky).

$$f_{E1}(E_{\gamma}) = \sum_{i=1}^{2} \sigma_{i} \Gamma_{i} \left[\frac{E_{\gamma} \Gamma_{i}(E_{\gamma}, T)}{(E_{\gamma}^{2} - E_{i}^{2})^{2} + E_{\gamma}^{2} \Gamma_{i}(E_{\gamma})^{2}} + \frac{0.7 \Gamma_{i} 4\pi^{2} T^{2}}{E^{5}} \right]$$

Gamma-ray emission (cont.)

Energy and temperature (T) dependent width

$$\Gamma_i(E_\gamma, T) = \Gamma_i \frac{E_\gamma^2 - 4\pi T^2}{E_i^2}.$$

 GDR parameters estimated from the spin dependent systematics.

CC MSD MSC DEGAS HMS Lev.Den. Results

MSC and MSD coupling

- Higher MSC classes populated directly from the MSD chain
- Incoming flux splits between the first MSD and MSC classes in proportion to the respective state densities and to the average value of the squared matrix elements
- $< V_{uu}^2 > {\rm unbound} \Rightarrow {\rm unbound} \ < V_{ub}^2 > {\rm unbound} \Rightarrow {\rm bound}$

MSC and MSD coupling (cont.)

$$T_1 = T_{om} \frac{R}{(R-1) + \frac{\rho_1(E)}{\rho_1^b(E)}}$$

where
$$R = < V_{ub}^2 > / < V_{uu}^2 >$$

$$T_n = T_{om} - \sum_{i=1}^{n-1} T_i \frac{R}{(R-1) + \frac{\rho_n(E)}{\rho_n^b(E)}}$$

MSC and MSD coupling (cont.)

• Absorption cross section available to MSC (σ_{abs}) is reduced by the total MSD emission

$$\sigma_{abs}(J) = \sigma_{OM}(J) \left(1 - \frac{\sigma_{MSD}}{\sigma_{OM}}\right)$$

CC MSD MSC DEGAS HMS Lev.Den. Results

Adjusted calculations (evaluation)

Fission calculations

Fission calculations (cont.)

EMPIRE and surrogate method

Appropriate theoretical tool because of:

- detailed modeling
 - extensive coverage of reaction mechanisms
 - flexible incident channel (including excited targets)
 - observation of spin/parity coupling
 - full gamma cascade
 - good fission model

EMPIRE and surrogate method

- simultaneous calculations of all major reaction channels (reliability)
- easy to use
 - Graphic User Interface (GUI)
 - simple input (extensive library of default input parameters)
 - automatic comparison with experimental data (adjusting parameters)

How to get EMPIRE

EMPIRE-2.18 (Mondovi) available at:

- http://www.nndc.bnl.gov/nndcscr/modelcodes/empire-ii/
- CD-ROM can be requested from: http://www-nds.iaea.org/cd-catalog.html

EMPIRE Web page

Next release of EMPIRE

EMPIRE-2.19 (Lodi) expected March/April 2004 will include:

- new fission channel
- reactions on excited targets
- merging of resonace region into the ENDF file

CC MSD MSC DEGAS HMS Lev.Den. Results